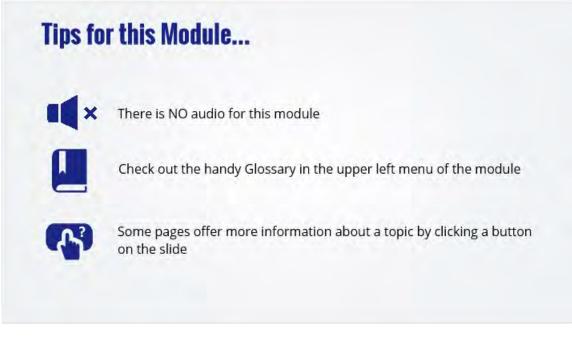
Initial Fluoroscopy Education for Providers

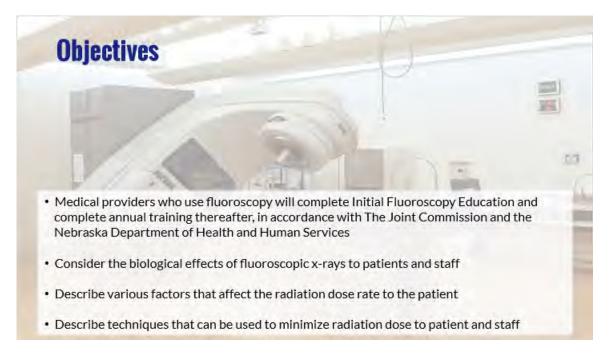
1. Initial Fluoroscopy Education for Providers

1.1 Title

1.2 Nebraska Medicine Information

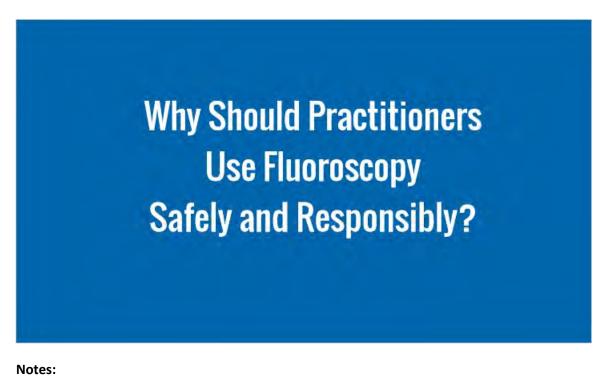

This educational presentation has been made available for informational and educational purposes only. Nebraska Medicine does not make any representation or warranties with respect to the accuracy, applicability, fitness, or completeness of the content. The content presented is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Nebraska Medicine hereby disclaims any and all liability to any party for any direct, indirect, implied, punitive, special, incidental or other consequential damages arising directly or indirectly from any use of the content, which is provided as is, and without warranties.

Last Updated: June 2022


For questions or more information contact: Thomas Lane, Medical Physicist (tlane@nebraskamed.com) or the Office of Health Professions Education (ophe@nebraskamed.com)

The Joint Commission requires each facility to have their own Annual Mandatory Review. So if you have privileges at Children's Hospital and Medical Center and Nebraska Medicine, you must take this education at both locations.

1.3 Tips for this Module...


1.4 Objectives

1.5 Topics: Privileges to Perform Fluoroscopy

1.6 Worker's Right

1.7 Regulations and Accreditation Guidelines for Fluoroscopy

		Accreditation Guidelines for Fluoroscopy
0	Accreditation Joint Commission	The Joint Commission requires that physicians who administer fluoroscopic x-rays to patients or human subjects receive annual radiation safety training, including Image Gently® and Image Wisely®
0	Regulatory State of Nebraska	The regulations regarding the use of radiation are provided in Title 180 Nebraska Administrative Code (180 NAC), "Control of Radiation". These regulations may be reviewed at the Radiation Safety Office or online. Regulations require that physicians who administer fluoroscopic x- rays are required to be monitored for radiation exposure and require radiation safety training.

1.8 Why is this important?

1.9 Who Can Administer

Who Can Administer Fluoroscopy?

Physicians

Physicians who have been granted privilege to use fluoroscopy by Medical Credentialing and by completing this course.

Residents/ Fellows

Residents/fellows are permitted to use fluoroscopy without the attending present if the following criteria is met:

- Resident/fellow has completed fluoroscopy training;
- The attending physician has fluoroscopy privileges and;
 If ACGME requirements are met

Physician Assistants

Physician Assistants who have been credentialed by Medical Credentialing may perform fluoroscopy if covered by their practice agreement.

1.10 Who Can Assist

Who Can Assist with Fluoroscopy?

CardioVascular Interventional Technologist (CVIT) and Radiology Technologists (RT's)

Only licensed Radiology Technologists (RT's) or board certified CardioVascular Interventional Technologists (CVIT's) are allowed to assist with positioning and operating of fluoroscopic equipment. These technologists may activate the fluoroscopic x-rays (i.e. push on the pedal) at the request of a credentialed physician who is physically present in the suite or control area.

RT's and CVIT's are not only trained to safely assist in operating the fluoroscopic equipment, they have training in how to comply with documentation requirements in the EMR, billing, etc.

1.11 Who Can NOT Administer

1.12 Who can administer fluoroscopic exams?

(Multiple Choice, 10 points, 3 attempts permitted)

et's	Review!
Wh	o can administer fluoroscopic exams?
ON	urse Practitioners (APRN) and nurses
🔘 fe	hysicians who have been granted privileges, residents and ellows who have been fluor trained and supervised by rivileged physicians, credentialed physician assistants
() A	Il of the Above

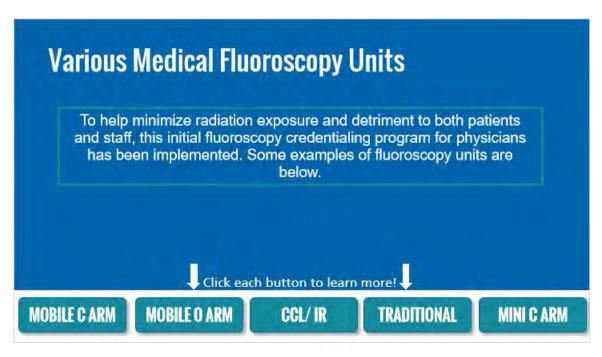
Correct	Choice
	Nurse Practitioners (APRN) and nurses
x	Physicians who have been granted privileges, residents and fellows who have been fluor trained and supervised by privileged physicians, credentialed physician assistants
	All of the Above

Feedback when correct:

That's right! Only those providers with training and privileges may perform or supervise fluoroscopy.

Feedback when incorrect:

Nurses and APRN's may not touch the equipment in any way.


Correct (Slide Layer)

Who ca		
🚫 Nurse P	That's right! Only those providers with training and privileges may perform or supervise fluoroscopy.	
Physicia fellows privileg	Continue	

Incorrect (Slide Layer)

Who ca	×	
Nurse P	Nurses and APRN's may not touch the equipment in any way.	
Physicia fellows privileg	Continue	1

1.13 Examples of Fluoroscopy Units

Mobile C (Slide Layer)

Mobile O (Slide Layer)

CCL (Slide Layer)

Traditional (Slide Layer)

Mini C (Slide Layer)

1.14 Does a physician need fluoroscopic privileges to use the mini-C arm, a

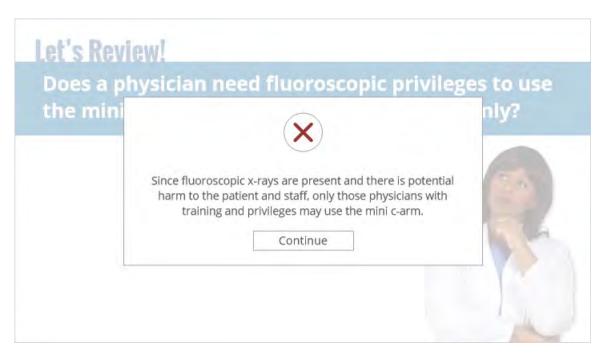
unit used for extremities only?

(Multiple Choice, 10 points, 3 attempts permitted)

Correct	Choice
х	Yes
	Νο

Feedback when correct:

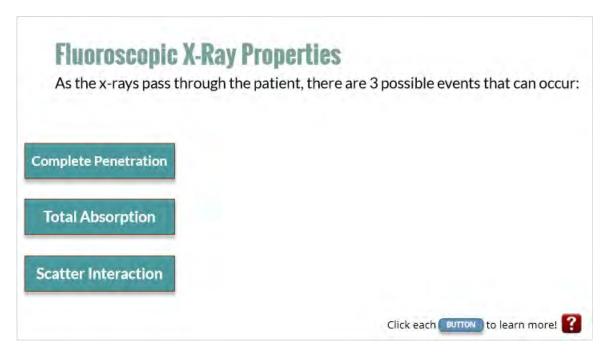
Since fluoroscopic x-rays are present and there is potential harm to the patient and staff, only those physicians with training and privileges may use the mini c-arm.

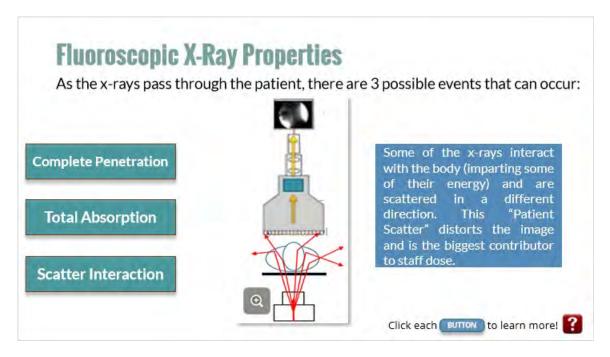

Feedback when incorrect:

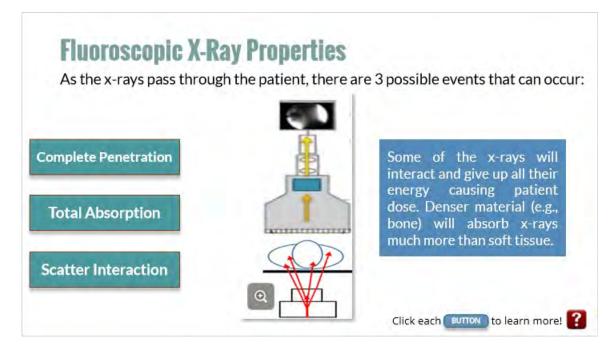
Since fluoroscopic x-rays are present and there is potential harm to the patient and staff, only those physicians with training and privileges may use the mini c-arm.

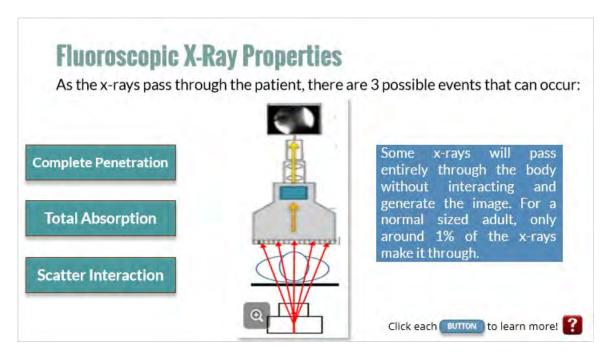
Correct (Slide Layer)

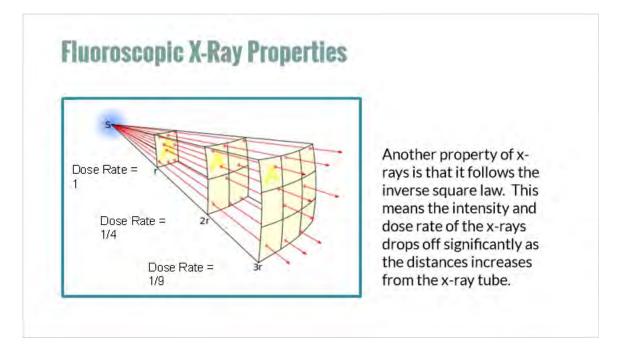
Let's Revi Does a ph	awl Aysician need fluoroscopic privileges	to use
the mini	Since fluoroscopic x-rays are present and there is potential harm to the patient and staff, only those physicians with training and privileges may use the mini c-arm. Continue	nly?


Incorrect (Slide Layer)


1.15 Topics: X-Ray Properties and Dose

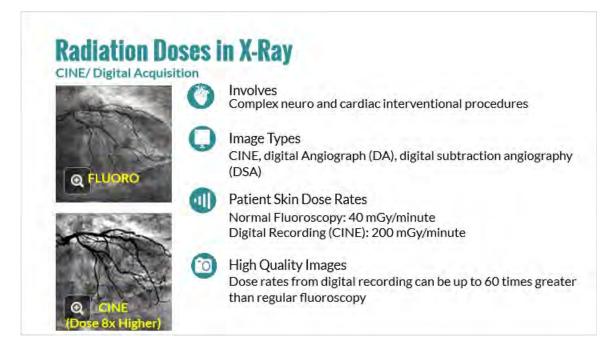

1.16 Fluoroscopic X-Ray Properties


Scatter Interaction (Slide Layer)

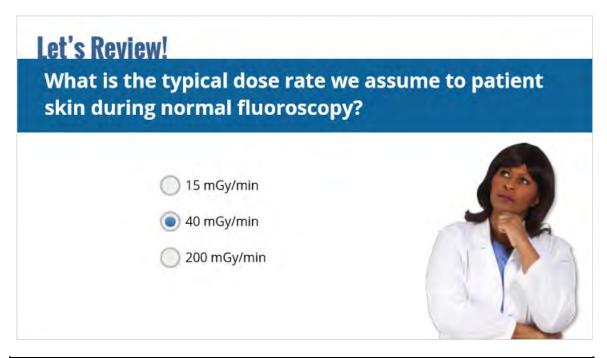

Total Absorption (Slide Layer)

Complete Penetration (Slide Layer)


1.17 Fluoroscopic X-Ray Properties


1.18 Units of Measure

1.19 Radiation Dose to the Patient and Staff


1.20 CINE/Digital Acquisition

1.21 What is the typical dose rate we assume to patient skin during

normal fluoroscopy?

(Multiple Choice, 10 points, 3 attempts permitted)

Correct	Choice
	15 mGy/min
х	40 mGy/min
	200 mGy/min

Feedback when correct:

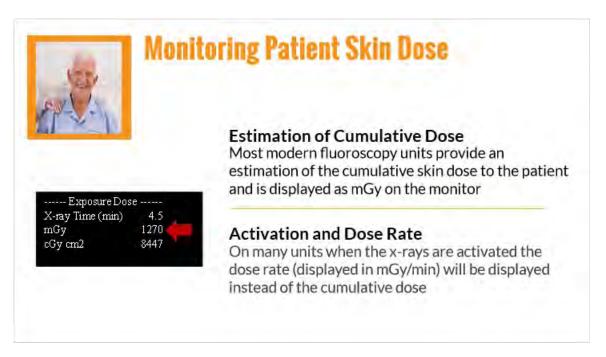
The entrance dose rate to the patient varies from 20 to 50 mGy/minute, but

40 mGy/min is assumed.

Feedback when incorrect:


The entrance dose rate to the patient varies from 20 to 50 mGy/minute, but

40 mGy/min is assumed.


Correct (Slide Layer)

Let's Revie	w!
	e typical dose rate we assume to patient
skin dur	The entrance dose rate to the patient varies from 20 to 50 mGy/minute, but 40 mGy/min is assumed.

Incorrect (Slide Layer)

1.22 Monitoring Patient Skin Dose

1.23 Interventional Reference Point

Monitoring Patient Skin Dose

Interventional Reference Point (IRP)

The displayed skin dose estimate is often referred to as the Interventional Reference Point (IRP)

The fluoro unit calculates the radiation dose at a fixed point which may not be where the xrays actually enter the patient. In addition, the IRP does not take into account the movement of the tube, so it can significantly overestimate the peak skin dose if the tube is moved around.

1.24 Interventional Reference Point

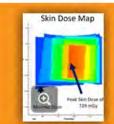
Monitoring Patient Skin Dose

Interventional Reference Point (IRP): Only an Estimate

NOTE: Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for the machine movement and also has to make an assumption where the x-rays enter the body.

In this example, the total dose displayed on the monitor was 1677 mGy. However, the peak skin dose was actually 729 mGy.

As you can see from this picture, this location may or may not be correct.


Exposure Dose (Slide Layer)

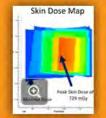
Monitoring Patient Skin Dose

Interventional Reference Point (IRP): Only an Estimate

NOTE: Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for the machine movement and also has to make an assumption where the x-rays enter the body.

In this example, the total dose displayed on the monitor was 1677 mGy. However, the peak skin dose was actually 729 mGy.

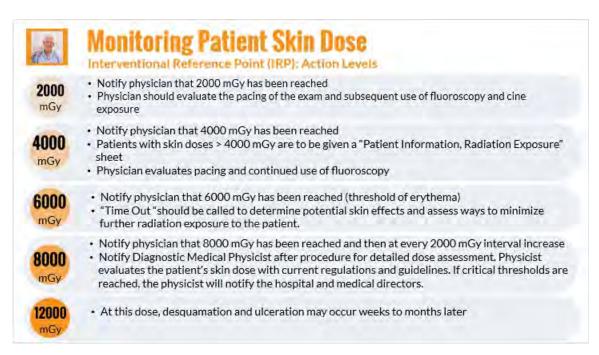
As you can see from this picture, this location may or may not be correct.


IRP (Slide Layer)

Monitoring Patient Skin Dose

Interventional Reference Point (IRP): Only an Estimate

NOTE: Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for the machine movement and also has to make an assumption where the x-rays enter the body.



In this example, the total dose displayed on the monitor was 1677 mGy. However, the peak skin dose was actually 729 mGy.

As you can see from this picture, this location may or may not be correct.

1.25 IRP: Action Levels

Notes:

1.26 The Interventional Reference Point (IRP) takes into account the

movement of the x-ray tube.

(Multiple Choice, 10 points, 3 attempts permitted)

Let's Review!

The Interventional Reference Point (IRP) takes into account the movement of the x-ray tube.

O True	(AL)
False	

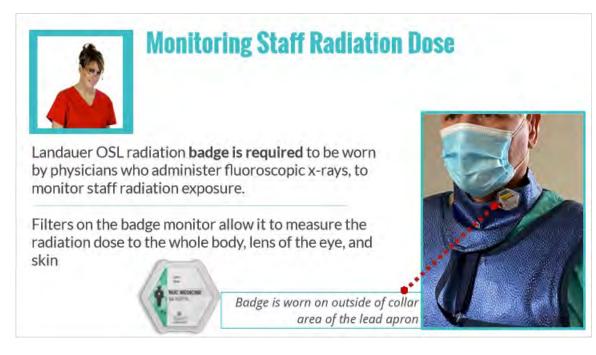
Correct	Choice
	True
х	False

Feedback when correct:

Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for the machine movement and also has to make an assumption where the x-rays enter the body.

Feedback when incorrect:

Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for the machine movement and also has to make an assumption where the x-rays enter the body.


Correct (Slide Layer)

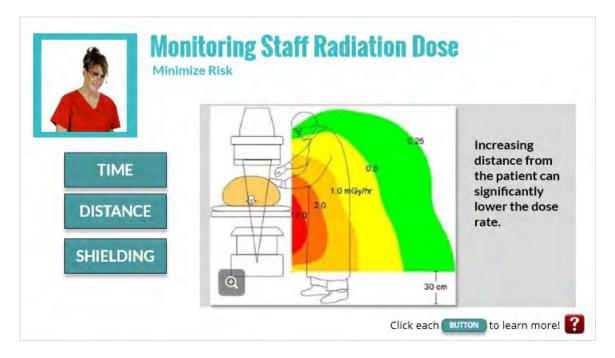
Let's Revi	ewl ventional Reference Point (IRP) takes into
account	Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for the machine movement and also has to make an assumption where the x-rays enter the body. Continue

Incorrect (Slide Layer)

iccount	\frown
	(\mathbf{X})
	Skin dose and dose rate shown on the fluoroscopy machine are only estimates. The unit does not account for
	the machine movement and also has to make an assumption where the x-rays enter the body.
	Continue

1.27 Monitoring Staff Radiation Dose

1.28 Monitoring Staff Radiation Dose: Minimize Risk


Time (Slide Layer)

Shielding (Slide Layer)

Distance (Slide Layer)

1.29 Pregnant Staff

	Monitoring Staff Radiation Dos Pregnant Staff	se
monitoring prog	rs may voluntarily enroll in the fetal ram by declaring pregnancy in diation Safety Officer.	
Fetal badges are	exchanged monthly.	
Two badges will	De Worn: Wear regular badge OUTSIDE of lead apron Wear fetal badge UNDER the apron	

1.30 Dose Limits to Radiation Workers

Dose Limits to Radiation Workers				
Dese	Regulatory Limit (Nuclear Regulatory Commission)	Comments		
EDE2	5000 mrem/yr	Essentially the "Whole Body" dose (DDE) modified by the shielding provided by the lead apron. The risk of 5000 mrem is comparable to risk working in "safe industry" (government office worker).		
LDE	15,000 mrem/yr	This is the Lens of the Eye Dose. Studies indicate the threshold for opacities in the eye may be much lower than thought and this dose limit is likely to be reduced down to 5000 mrem/yr.		
SDE	50,000 mrem/yr	SDE is a measure of dose to your skin and hands. This dose limit was set well below the threshold for where erythema occurs (acute exposure of 2 Gy or approximately 200,000 mrem).		
Fetal	500 mrem/gestation	The fetus is believed to be more radiosensitive so this dose limit was set at 10% of the adult whole body limit.		

Notes:

1.31 What is the EDE2 regulatory limit for occupational workers in fluoro?

(Multiple Choice, 10 points, 3 attempts permitted)

Let's Review!

What is the EDE2 regulatory limit for occupational workers in fluoro?

Correct	Choice
	10000 mGy
	7000 mGy
х	5000 mGy

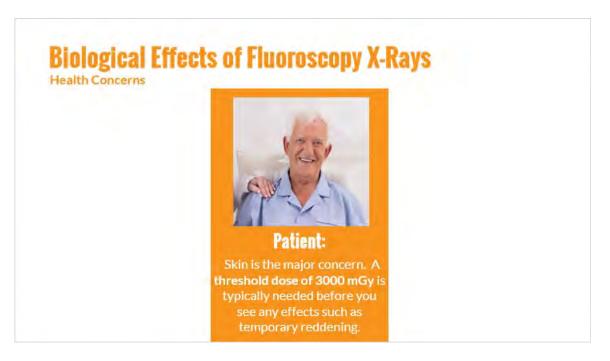
Feedback when correct:

Essentially the "Whole Body" dose (DDE) modified by the shielding provided by the lead apron. The risk of 5000 mrem is comparable to risk working in "safe industry" (government office worker).

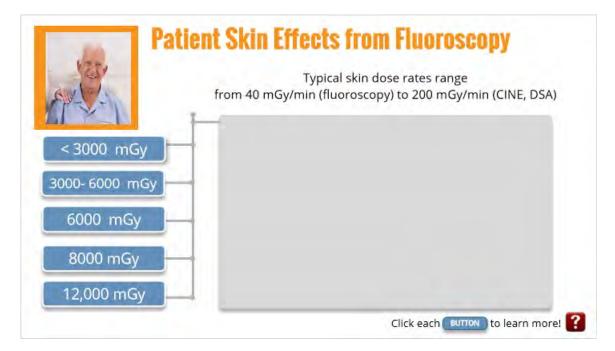
Feedback when incorrect:

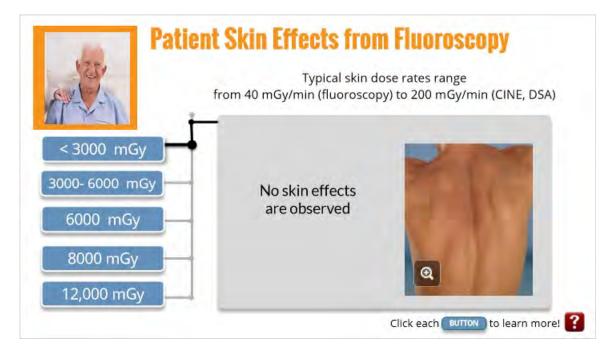
Essentially the "Whole Body" dose (DDE) modified by the shielding provided by the lead apron. The risk of 5000 mrem is comparable to risk working in "safe industry" (government office worker).

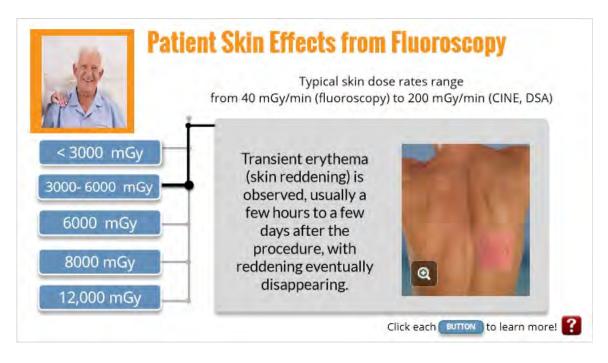
Correct (Slide Layer)

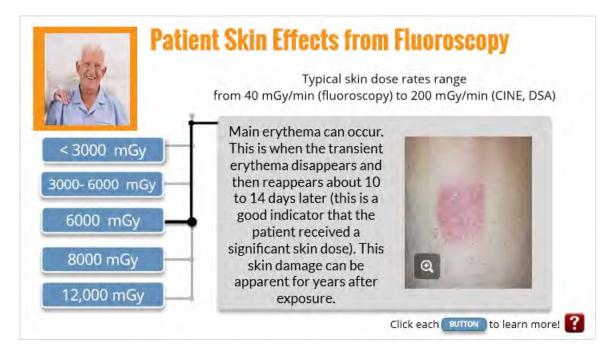

Incorrect (Slide Layer)

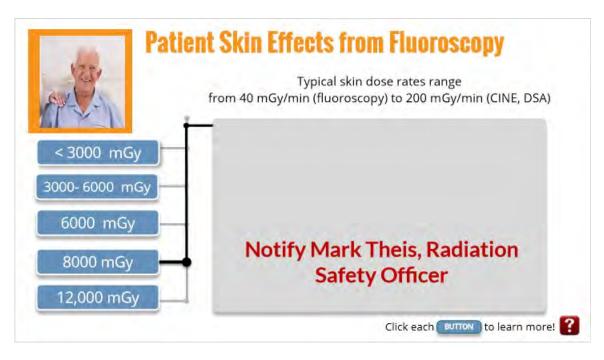
workers		
	Essentially the "Whole Body" dose (DDE) modified by the shielding provided by the lead apron. The risk of 5000	
	mrem is comparable to risk working in "safe industry" (government office worker). Continue	

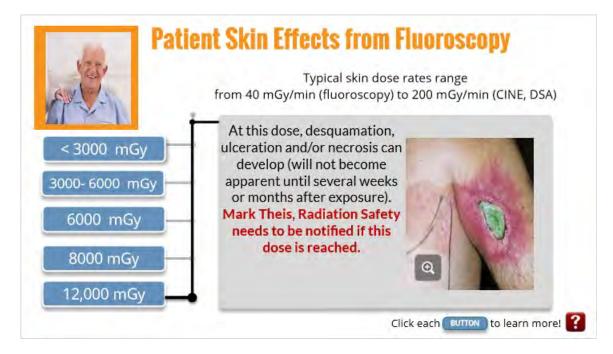

1.32 Topics: Biological Effect for Patients and Staff


1.33 Patient Health Concerns

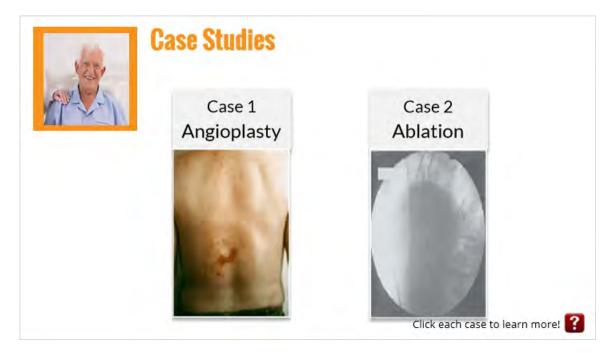

1.34 Patient Skin Effects from Fluoroscopy

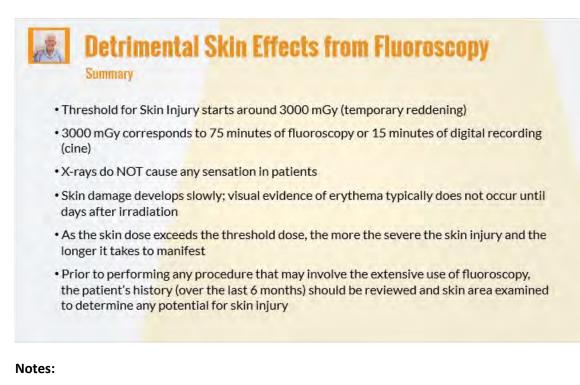

<2000 (Slide Layer)


2000-6000 (Slide Layer)


6000 (Slide Layer)

8000 (Slide Layer)

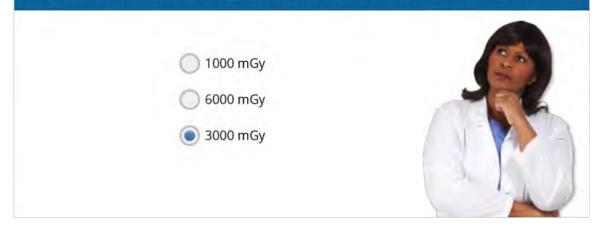

12,000 (Slide Layer)


1.35 Detrimental Skin Effects from Fluoroscopy

Effect	Single Dose Threshold	Onset	Time to Reach Threshold-Fluoro (40 mGy/min)	Time to Reach Threshold- Digital (200 mGy/min)
Early Transient Erythema	3000 mGy	2-24 Hours	75 minutes	15 minutes
Main Erythema	6000 mGy	10 days	150 minutes	30 minutes
Dry Desquamation	14,000 mGy	4 weeks	350 minutes	70 minutes
Moist Desquamation	18,000 mGy	4 weeks	450 minutes	90 minutes
Secondary Ulceration	24,000 mGy	>6 weeks	600 minutes	120 minutes
Dermal Necrosis (late phase)	>12,000 mGy?	>1 year	300 minutes	60 minutes

1.36 Case Studies

1.37 Detrimental Skin Effects Summary


1.38 For most patients, what is the dose threshold to the patient's skin at

which reddening/damage occurs?

(Multiple Choice, 10 points, 3 attempts permitted)

Let's Review!

For most patients, what is the dose threshold to the patient's skin at which reddening/damage occurs?

Correct	Choice
	1000 mGy
	6000 mGy
х	3000 mGy

Feedback when correct:

3000 mGy corresponds to 75 minutes of fluoroscopy or 15 minutes of digital recording (cine) and patients do not feel any sensation initially.

Feedback when incorrect:

3000 mGy corresponds to 75 minutes of fluoroscopy or 15 minutes of digital recording (cine) and patients do not feel any sensation initially.

Correct (Slide Layer)

(CU	ırs?
15 minutes of digital do not feel any	recording (cine) and p v sensation initially.		
	r 15 minutes of digital do not feel any		

Incorrect (Slide Layer)

Let's Revie For most	wl patients, what is the dose thresho	ld to the
patient':	3000 mGy corresponds to 75 minutes of fluoroscopy or 15 minutes of digital recording (cine) and patients do not feel any sensation initially. Continue	curs?

1.39 If the patient skin dose threshold (3000 mGy) is reached, transient

erythema can be seen:

(Multiple Choice, 10 points, 3 attempts permitted)

	t skin dose threshold (3 nsient erythema can be	
approximately	llowing the procedure 2-24 hours following the procedure onth following the procedure	

Correct	Choice
	immediately following the procedure
х	approximately 2-24 hours following the procedure
	at least one month following the procedure

Feedback when correct:

Transient Erythema (skin reddening) occurs initially between 3000 and 6000 mGy and appears few hours to a few days after the procedure, with reddening eventually disappearing.

Feedback when incorrect:

Transient Erythema (skin reddening) occurs initially between 3000 and 6000 mGy and appears few hours to a few days after the procedure, with reddening eventually disappearing.

Correct (Slide Layer)

Let's Revit	awl ent skin dose threshold (3000 mGy) is
reached	Transient Erythema (skin reddening) occurs initially between 3000 and 6000 mGy and appears few hours to a few days after the procedure, with reddening eventually disappearing. Continue

Incorrect (Slide Layer)

eached	ient skin dose threshold (3000 mGy) is
	Transient Erythema (skin reddening) occurs initially
immedi 🦳	between 3000 and 6000 mGy and appears few hours to a few days after the procedure, with reddening
approxi	eventually disappearing. Continue
atleast	

1.40 At what dose threshold should the Diagnostic Medical Physicist be

notified?

(Multiple Choice, 10 points, 3 attempts permitted)

At	<mark>s Review!</mark> what dose threshold shoul dical Physicist be notified?	
	 6000 mGy 8000 mGy 3000 mGy 	
Correct	Choice	
	6000 mGy	
х	8000 mGy	

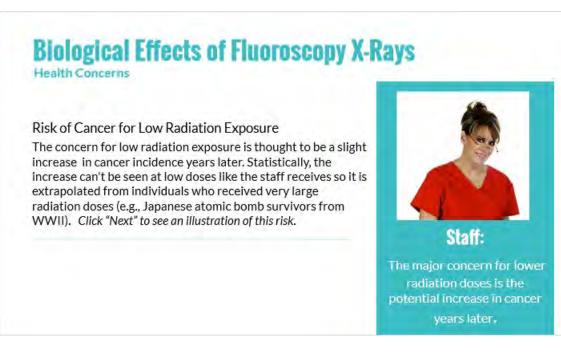
3000 mGy

Feedback when correct:

If the patient dose reaches 8000 mGy, the Radiation Safety Officer is required to be notified.

Feedback when incorrect:

If the patient dose reaches 8000 mGy, the Radiation Safety Officer is required to be notified.

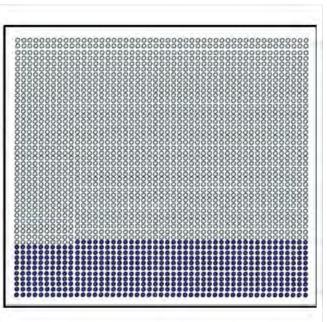

Correct (Slide Layer)

Let's Revi	ew!
At what d	lose threshold should the Diagnostic
Medical	
	If the patient dose reaches 8000 mGy, the Radiation Safety Officer is required to be notified. Continue

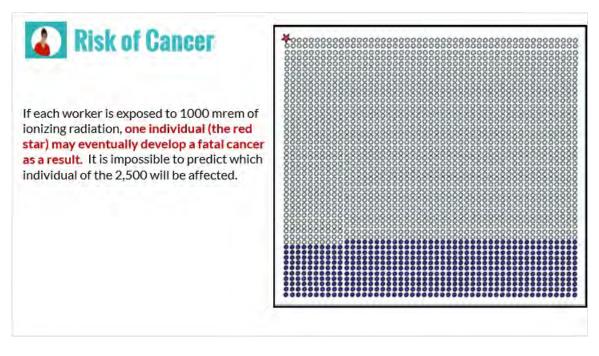
Incorrect (Slide Layer)

Let's Revie	w!
At what d	ose threshold should the Diagnostic
Medical	×
	If the patient dose reaches 8000 mGy, the Radiation Safety Officer is required to be notified.

1.41 Staff Health Concerns

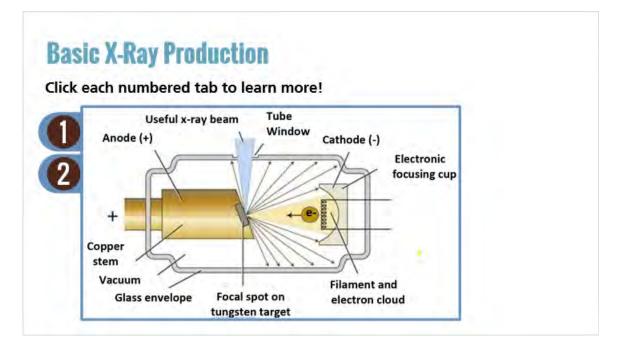


1.42 Risk of Cancer

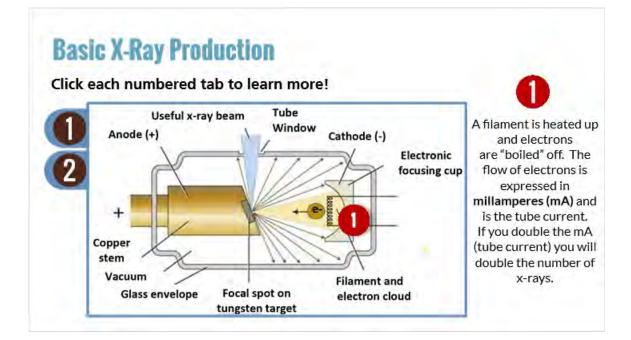


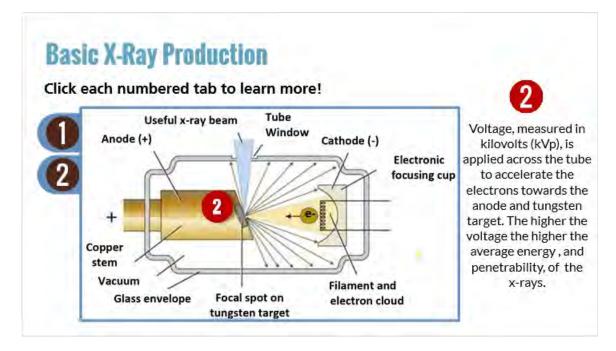
The chance of eventually developing a fatal cancer from radiation is 0.00004% per millirem. The figure (right) illustrates this situation. The gray circles represent 2,500 workers each receiving 1000 mrem (the amount a worker could receive annually where fluoroscopy is used).

Over the course of a lifetime, more than 500 individuals will contract a fatal cancer from other causes not associated with exposure to ionizing radiation (the colored purple circles at the bottom of the figure).



1.43 Risk of Cancer




1.45 Basic X-Ray Production

Tab 01 (Slide Layer)

Tab 02 (Slide Layer)

(Multiple Choice, 10 points, 3 attempts permitted)

_•

To ii	Review! ncrease the penetrability of x-rays, the uld be
	 mA, increased kVp of the tube, increased magnification, decreased
Correct	Choice
	mA, increased

magnification, decreased

kVp of the tube, increased

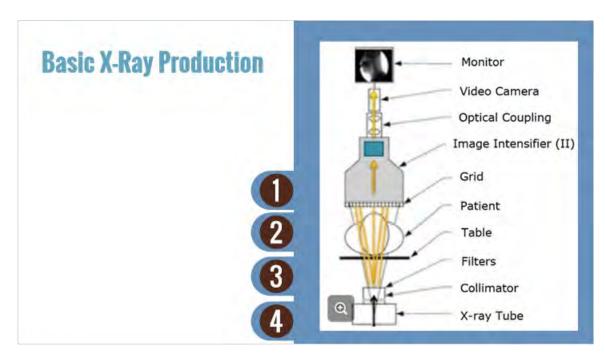
Feedback when correct:

Х

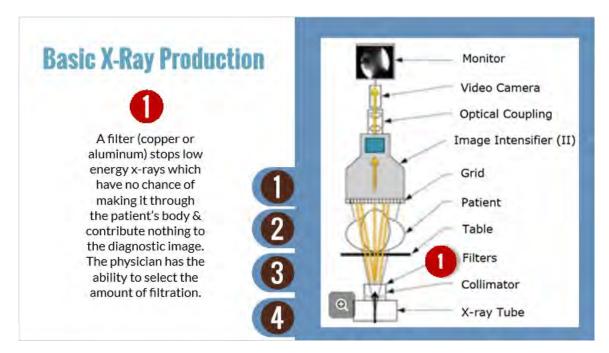
mA only affects the number of x-rays, not the penetrability of the x-rays" and "decreasing magnification will not increase the penetrability of the x-rays.

Feedback when incorrect:

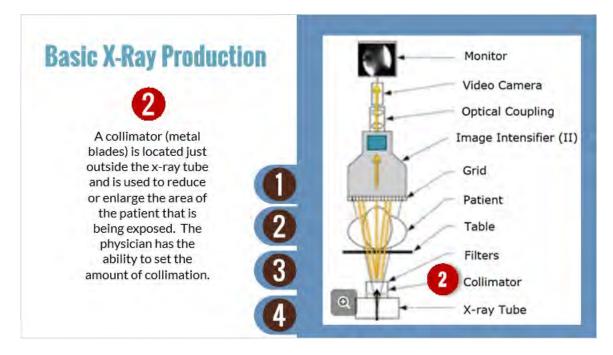
mA only affects the number of x-rays, not the penetrability of the x-rays" and "decreasing magnification will not increase the penetrability of the x-rays.

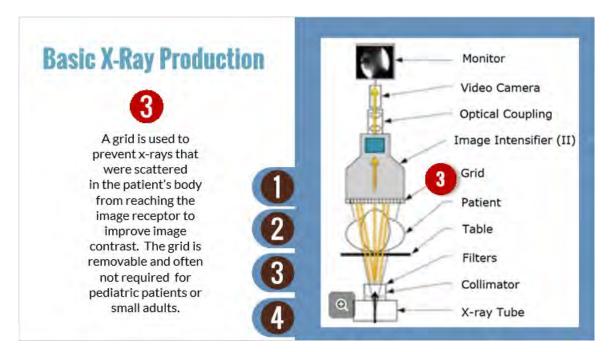

Correct (Slide Layer)

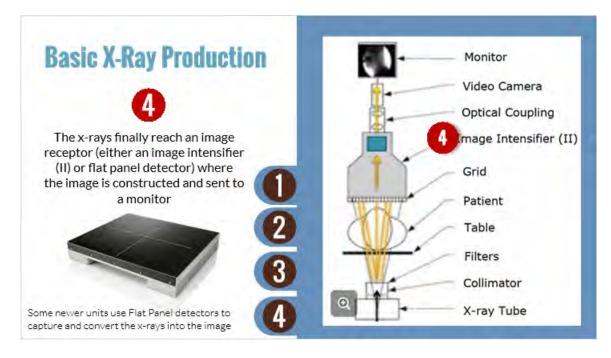
should b	se the penetrability of x-rays, t	
	mA only affects the number of x-rays, not the penetrability of the x-rays" and "decreasing magnification will not increase the penetrability of t x-rays.	he
	Continue	1


Incorrect (Slide Layer)

To increa should b	se the penetrability of x-rays, the	
	mA only affects the number of x-rays, not the penetrability of the x-rays" and "decreasing magnification will not increase the penetrability of the x-rays.	
	Continue	


1.47 Basic X-Ray Production


Tab 01 (Slide Layer)


Tab 02 (Slide Layer)

Tab 03 (Slide Layer)

Tab 04 (Slide Layer)

1.48 Automatic Exposure Control

Automatic Exposure Control (AEC)

Remember! In general, the higher the image

quality the higher the dose rate to the patient. Many image quality operations are automatically controlled in realtime by the fluoroscopy system. While the operations are passive to the operator, they markedly affect radiation dose.

The AEC controls the x-ray technique (kVp and mA). Using feedback, the technique is adjusted to ensure that a sufficient number of x-rays reach the image receptor. The adjustment of the kVp and mA affects the radiation dose rate to the patient.

Be aware of sampling area often visualised by dotted line

1.49 Typically, what is the relationship between image quality and patient

dose rate?

(Multiple Choice, 10 points, 3 attempts permitted)

Let's Review!	
Typically, what is the relationship betw quality and patient dose rate?	een image
quality and patient dose rate:	
The higher the image quality, the higher the patient dose ratio	ite.
The higher the image quality, the lower the patient dose rate.	-76
	- 'A

Correct	Choice	Feedback
x	The higher the image quality, the higher the patient dose rate.	In general, you should go with the lowest image quality that you can adequately perform the exam with.
	The higher the image quality, the lower the patient dose rate.	High image quality is achieved by increasing the patient dose rate. Care should be taken to balance the highest image quality with patient safety.

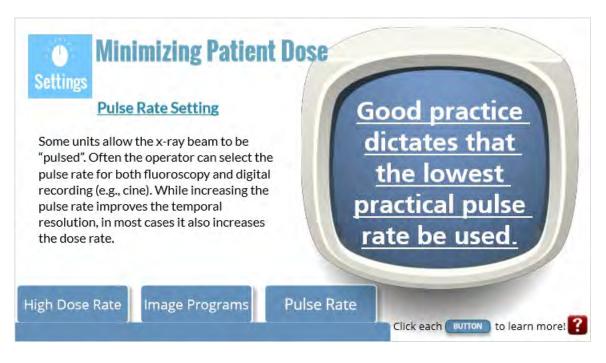
uality a	what is the relationship between ima	
💿 The hìg	In general, you should go with the lowest image quality that you can adequately perform the exam with.	
The hig rate.	Continue	

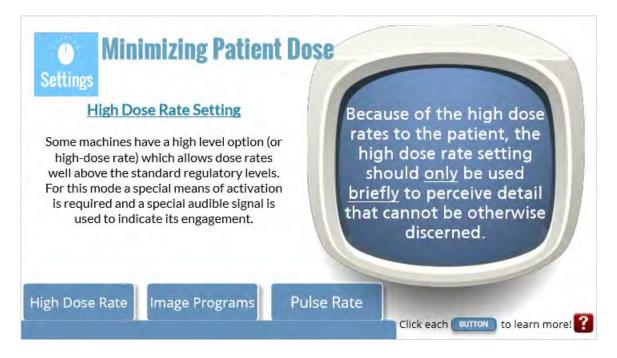
The higher the image quality, the higher the patient dose rate. (Slide Layer)

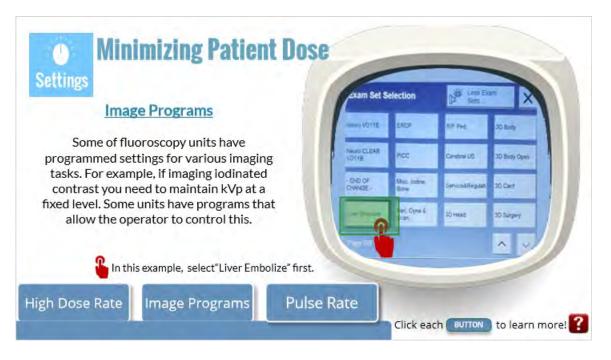
The higher the image quality, the lower the patient dose rate. (Slide Layer)

uality a	X	
🖲 The hig	High image quality is achieved by increasing the patient dose rate. Care should be taken to balance the highest image quality with patient safety.	-
The hig rate,	Continue	

1.50 Operator Settings


1.51 Minimizing Risk


1.52 Minimizing Patient Dose: Settings


Pulse Rate (Slide Layer)

high Dose Rate (Slide Layer)

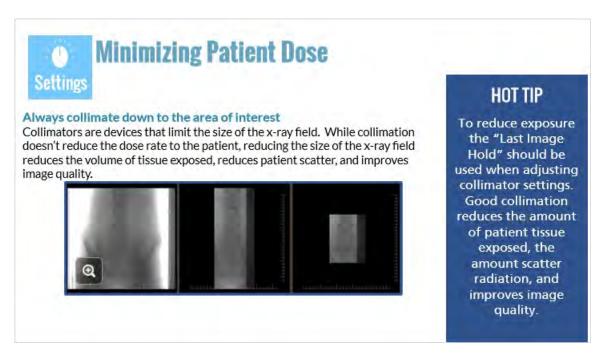
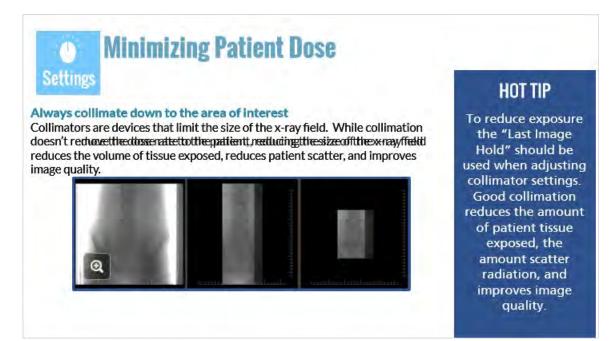
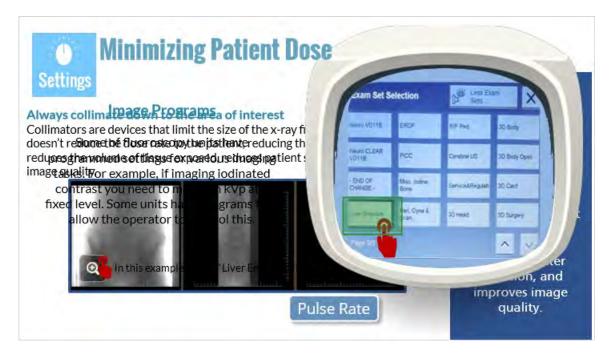

Image program 1 (Slide Layer)

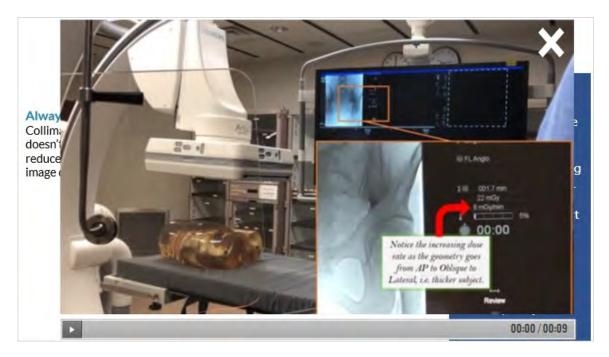
Image program 2 (Slide Layer)

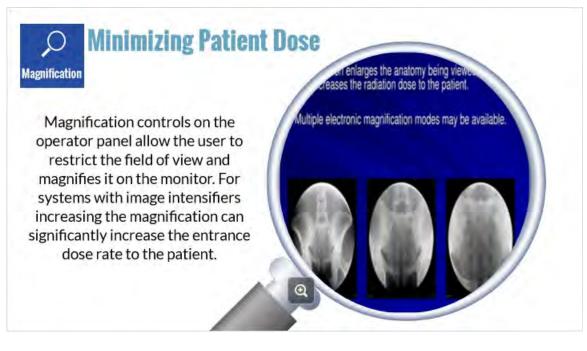

1.53 Minimizing Patient Dose: Settings

Pulse Rate (Slide Layer)

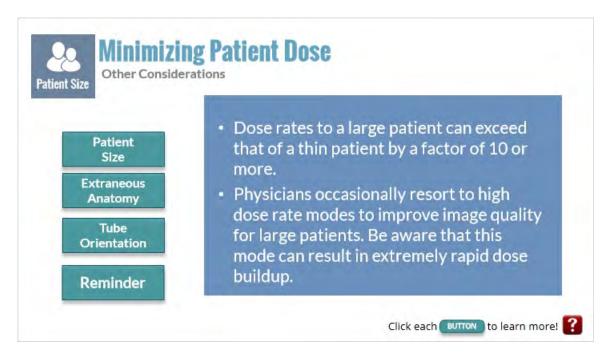

collimate to area of interest (Slide Layer)

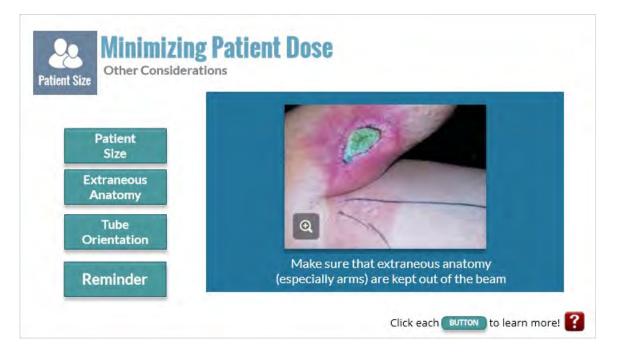
high Dose Rate (Slide Layer)


Image program 1 (Slide Layer)

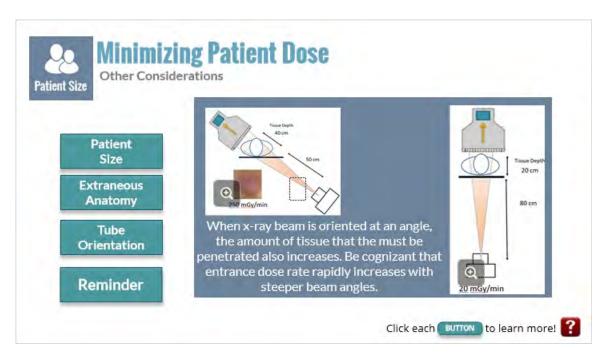

Image program 2 (Slide Layer)

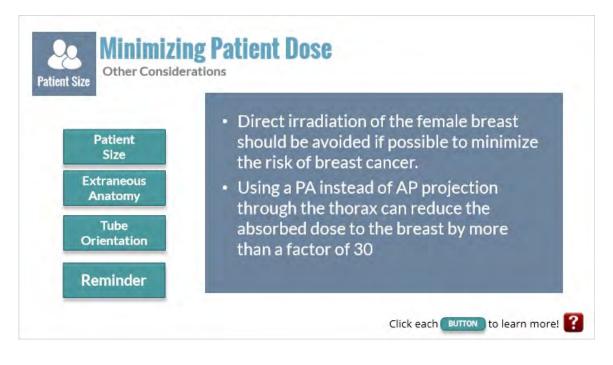
Pulse Rate - magnified (Slide Layer)

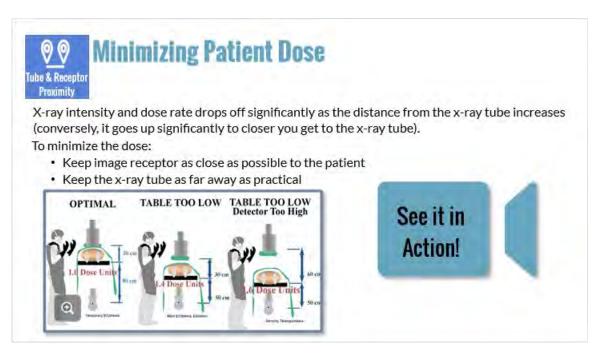

1.54 Minimizing Patient Dose: Magnification


1.55 Minimizing Patient Dose: Patient Size

Size Minimizing Patie Other Considerations	nt Dose
Patient Size	
Extraneous Anatomy	
Tube Orientation	
Reminder	
	Click each BUTTON to learn more


Patient Size (Slide Layer)

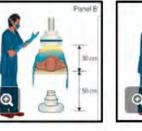

Extraneous Anatomy (Slide Layer)


Tube Orientations (Slide Layer)


Reminder (Slide Layer)

1.56 Minimizing Patient Dose:Tube & Receptor Proximity

1.57 Minimizing Patient Dose:Beam Time


1.58 Which diagram depicts the optimal distance the patient should be from the x-ray tube and image receptor in order to give a lower dose rate to the patient, but still acquire adequate images:

(Drag and Drop, 10 points, 4 attempts permitted)

Let's Review!

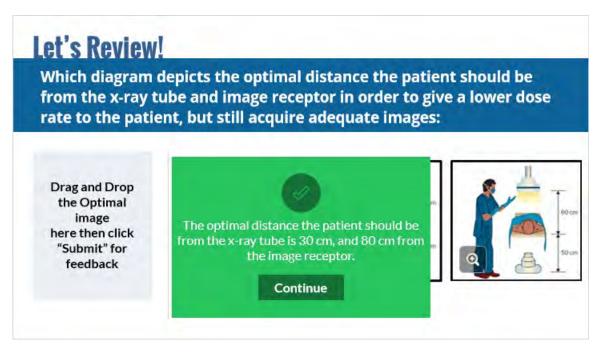
Which diagram depicts the optimal distance the patient should be from the x-ray tube and image receptor in order to give a lower dose rate to the patient, but still acquire adequate images:

Drag and Drop the Optimal image here then click "Submit" for feedback

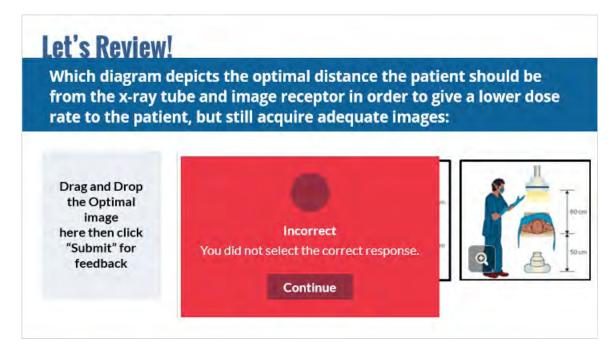
Drag Item	Drop Target
Picture 2	Label 01
Picture 3	
Picture 1	

Drag and drop properties
Return item to start point if dropped outside the correct drop target
Snap dropped items to drop target (Stack random)
Delay item drop states until interaction is submitted

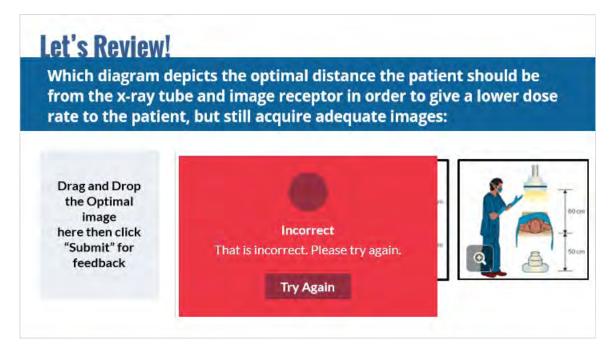
Feedback when correct:

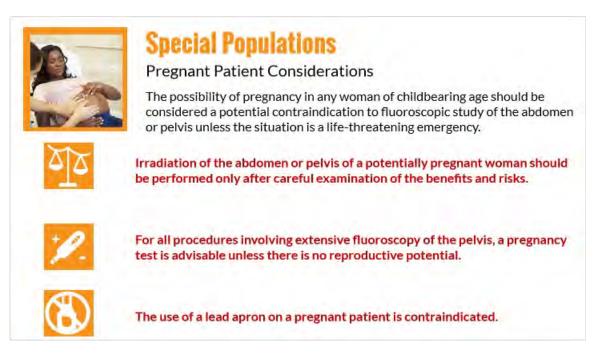

The optimal distance the patient should be from the x-ray tube is 30 cm, and 80 cm from the image receptor.

Feedback when incorrect:


You did not select the correct response.

Notes:


Correct (Slide Layer)


Incorrect (Slide Layer)

Try Again (Slide Layer)

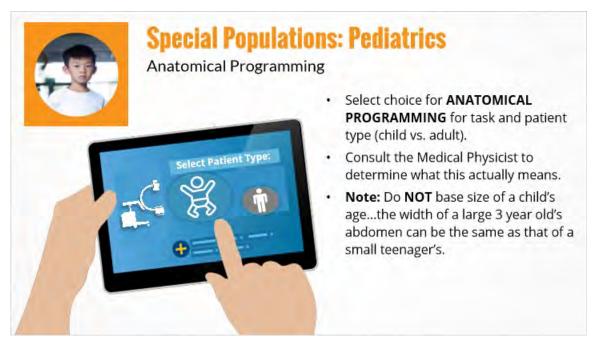
1.59 Minimizing Patient Dose: Pregnant Patients

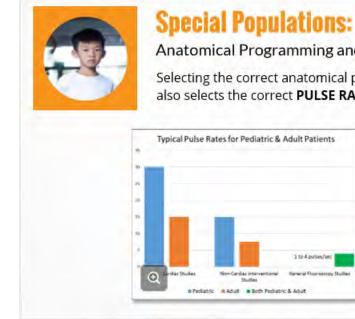
1.60 Special Populations: Pediatrics

Special Populations

Pediatric Considerations

NOTE: Radiation safety in fluoroscopic imaging is of special concern for pediatric patients


- Children are more radiosensitive than adults for about 30% of cancers. The younger the child the more sensitive his or her body is.
- Children have a longer expected lifetime for the effects from radiation exposure to potentially develop into cancer.
- Children receive a larger radiation dose than is necessary when the fluoroscope uses x-ray equipment settings designed exclusively for adults.

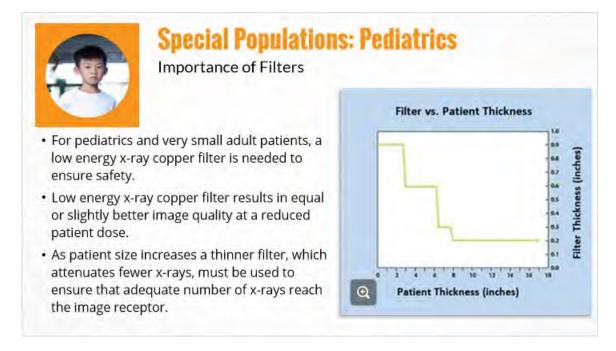

1.61 Special Populations: Pediatrics

1.62 Special Populations: Pediatrics

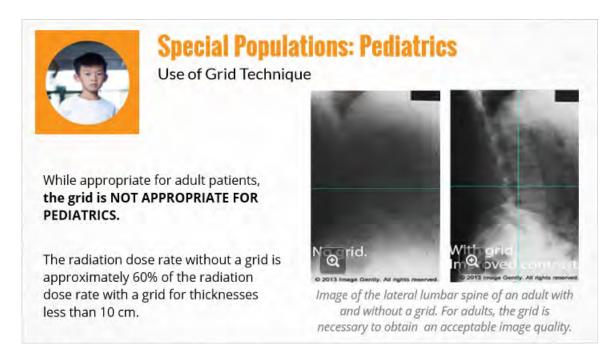
1.63 Special Populations: Pediatrics

EXAMPLE: Pediatric cardiac studies require frame rates of 30 pulses/second verus 15 pulses/second that is typically used for adult cardiac cases.

Notes:


Special Populations: Pediatrics

Anatomical Programming and Pulse Rate


Selecting the correct anatomical programming (child versus adult) also selects the correct PULSE RATE.

1.64 Special Populations: Pediatrics

Importance of Filters

1.65 Special Populations: Pediatrics

Notes:

1.66 For the pediatric patient, is the grid needed?

(Multiple Choice, 10 points, 3 attempts permitted)

Let's Review!

For the pediatric patient, is the grid needed?

Correct	Choice	Feedback
	Yes	The radiation dose rate without a grid is approximately 60% of the radiation dose rate with a grid for thicknesses less than 10 cm.
х	No	The radiation dose rate without a grid is approximately 60% of the radiation dose rate with a grid for thicknesses less than 10 cm.

Correct (Slide Layer)

For the	
	Feedback Title
	The radiation dose rate without a grid is approximately 60% of the radiation dose rate with a grid for thicknesses less than 10 cm.
	Continue

Incorrect (Slide Layer)

For the	
	Feedback Title The radiation dose rate without a grid is approximately 60% of the radiation dose rate with a grid for thicknesses less than 10 cm.
	Continue

1.67 As a Radiation Worker, Pledge your Responsibility...

(Multiple Response, 10 points, unlimited attempts permitted)

Asal	Radiation Worker, Pledge your Responsibility
Read a	nd click each item below to continue.
	will be responsible for correctly wearing a radiation badge at all times when working with or near a ource of occupational radiation exposure.
	understand supervisors and managers have been instructed to enforce rules and consequences for oncompliance
-	will follow any applicable rules and procedures for protection and safety specified by the hospital
	will cooperate with the radiation safety officer with respect to wearing dosimeter badges and notify nem if my badge is lost/damaged in any way
	will abstain from any willful action that could put myself or others in situations that contravene the equirements of the standard
-	

I will accept information, instruction, and training concerning radiation protection and safety

Correct	Choice
х	I will be responsible for correctly wearing a radiation badge at all times when working with or near a source of occupational radiation exposure.
х	I understand supervisors and managers have been instructed to enforce rules and consequences for noncompliance
x	I will follow any applicable rules and procedures for protection and safety specified by the hospital
х	I will cooperate with the radiation safety officer with respect to wearing dosimeter badges and notify them if my badge is lost/damaged in any way
x	I will abstain from any willful action that could put myself or others in situations that contravene the requirements of the standard
х	I will accept information, instruction, and training concerning radiation protection

and safety

Feedback when correct:

Thank You for taking the pledge!

Feedback when incorrect:

You must select all responsibilities in the pledge.

Notes:

Correct (Slide Layer)

i will be res source of o		g with or near a
I understan noncomplia	Correct	onsequences fo
I will follow	Thank You for taking the pledge!	by the hospital
) will cooper them if my	Continue	adges and notify
I will abstail		contravene the

Incorrect (Slide Layer)

will be res		g with or near a
I understan	×	onsequences fo
noncomplia	Incorrect	
I will follow		by the hospital
I will cooper	You must select all responsibilities in the pledge.	adges and notify
them if my	Continue	-aberra uprij
I will abstain		contravene the

Try Again (Slide Layer)

will be res		g with or near a
🔄 l understah	×	onsequences for
noncomplia	Incorrect	
I Will follow		by the hospital
I will cooper	You must select all responsibilities in the pledge.	adges and notify
them if my	Try Again	
Will abstail		contravene the

1.68 Resource: ACR Image Gently Pause and Pulse Checklist

Resources

ACR Image Gently Pause and Pulse Checklist.

Below are a few highlights from the ACR Image Gently Alliance Pause and Pulse Checklist for physicians to enhance radiation protection in **PEDIATRIC** fluoroscopy.

- Ask patient or family about previous radiation. Answer questions about radiation safety (brockere)
 available on Image Gently website).
- Use non-radiation modality, such as ultrasound, when possible.
- Consider position and aperture of the collimators before and during the procedure, as conditions and fields of view change.
- Enlist help of Child Life Specialist, Patient Education Specialist, parent/guardian, or appropriate music to minimize patient motion. A DVD could be viewed in procedures involving wait time (e.g., waiting for bladder to fill during VCUG).
- When patient position needs to be changed, plan ahead and communicate with personnel to minimize need for additional fluoroscopy or repeat exposure.
- After procedure: record and review fluoroscopic procedures used and fluoroscopy time.
- · Only perform fluoroscopy in compliance with hospital policy.

1.69 Resource: Radiation Safety Office

1.70 Exit

2. Lightboxes

2.1 Angioplasty

2.2 Ablation

Case 2: Ablation

Radiation injury to the (R) arm just above elbow of a patient who underwent radiofrequency cardiac catheter ablation for arrhythmia. The right humerus of the patient is visible in the cine image in Figure 1. The arm was in the direct beam very near port of the x-ray tube. The dose rates exceeded 500 mGy/minute. The total fluoroscopy time was about 20 minutes with the dose to the arm probably exceeding 25,000 mGy.

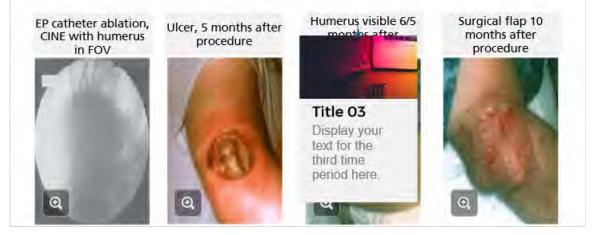
Date 01 (Slide Layer)

Case 2: Ablation

Radiation injury to the (R) arm just above elbow of a patient who underwent radiofrequency cardiac catheter ablation for arrhythmia. The right humerus of the patient is visible in the cine image in Figure 1. The arm was in the direct beam very near port of the x-ray tube. The dose rates exceeded 500 mGy/minute. The total fluoroscopy time was about 20 minutes with the dose to the arm probably exceeding 25,000 mGy.

Date 02 (Slide Layer)

Case 2: Ablation


Radiation injury to the (R) arm just above elbow of a patient who underwent radiofrequency cardiac catheter ablation for arrhythmia. The right humerus of the patient is visible in the cine image in Figure 1. The arm was in the direct beam very near port of the x-ray tube. The dose rates exceeded 500 mGy/minute. The total fluoroscopy time was about 20 minutes with the dose to the arm probably exceeding 25,000 mGy.

Date 03 (Slide Layer)

Case 2: Ablation

Radiation injury to the (R) arm just above elbow of a patient who underwent radiofrequency cardiac catheter ablation for arrhythmia. The right humerus of the patient is visible in the cine image in Figure 1. The arm was in the direct beam very near port of the x-ray tube. The dose rates exceeded 500 mGy/minute. The total fluoroscopy time was about 20 minutes with the dose to the arm probably exceeding 25,000 mGy.

Date 04 (Slide Layer)

Case 2: Ablation

Radiation injury to the (R) arm just above elbow of a patient who underwent radiofrequency cardiac catheter ablation for arrhythmia. The right humerus of the patient is visible in the cine image in Figure 1. The arm was in the direct beam very near port of the x-ray tube. The dose rates exceeded 500 mGy/minute. The total fluoroscopy time was about 20 minutes with the dose to the arm probably exceeding 25,000 mGy.

2.3 Pulse Rate

se Rate											
The downside of de reducing the pulse Tradeoff is a more	rate from	15 to 7.5									
Images 💉	*	*	*	•	*	*	×	*	*	R	A
X-rays		ÊΈ	11	1		L	1	Ľ	Ľ	F	1
			15 fra	mes p	er se	econ	nd —	-		_	-
X-rays 🗷	r	•	E		7		K		×		*
			_1		1						pī.
Inoges		- 7.5	frames	per s	ecor	nd ·		_	<u>.</u>		1

Date 01 (Slide Layer)

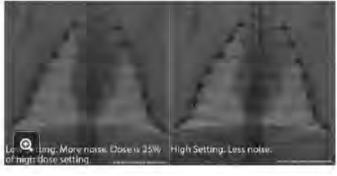
Ise Rate							
The downside of dec reducing the pulse ra Tradeoff is a more ch	ate from	15 to 7.5					
Images 💉 🖬		*	*	*	*	*	* *
	L		11		11		
	-	6 A 10	15 fram	nes per s	econd -	_	
Title 01		122					
Display your text for the first	×	*	*	*	×	×	A
time period here	1		1	1			
1.000				per seco			

Date 02 (Slide Layer)

lse Rate						
	reasing pulse rate is t ite from 15 to 7.5 fran ioppy motion.					
Images 🛪 🖬				* *	•	-
X-rays	Tian .		per sec		Ц	<u>11</u>
	Title 02	_R	per sec		_	
X-rays 🗷	Display your lext for the]	T	K	K	R
X-rays 🗷	Display your]	er sec	R I	K	R

Date 03 (Slide Layer)

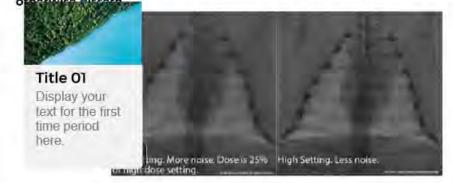
rate from 15	5 to 7.5 fra					
* * •		*	* *		*	* *
		11				ED.
	1	15 fram		-		
			Title 03			
×	*	-	Display yo text for the		*	×
			third time			
	rate from 15	rate from 15 to 7.5 fra choppy motion.	rate from 15 to 7.5 frames per	rate from 15 to 7.5 frames per second. Patie choppy motion.	rate from 15 to 7.5 frames per second. Patient dose is re choppy motion.	Title 03

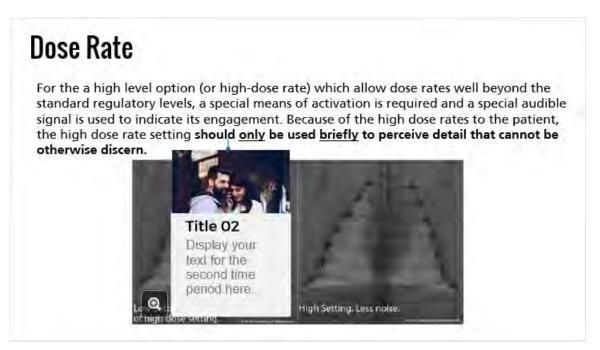

Date 04 (Slide Layer)

Pulse Rate						
	ate from 15 t	o 7.5 fram				py". Below is the effect of duced by around a half.
Images 💉 🗖		*	*	*	*	
X-rays	11	11	11		11	
		— 15	frames p	er secor	nd —	
X-rays 🜌	K	*	K	7	K	Title 04 Display your text for the
						fourth time period here
Imoges '		7.5 fran	nes per s	econd	-	•

2.4 Dose Rate

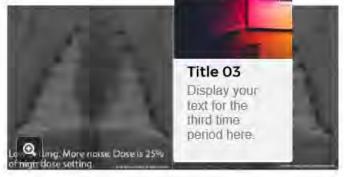
Dose Rate

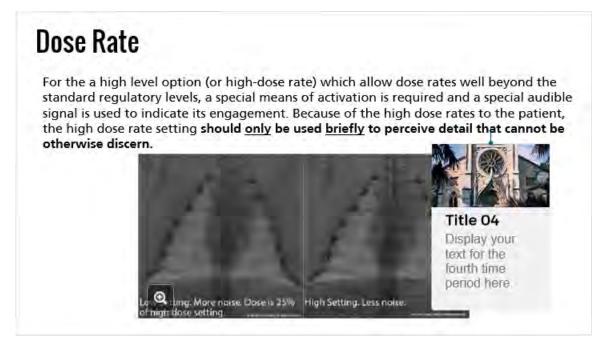

For the a high level option (or high-dose rate) which allow dose rates well beyond the standard regulatory levels, a special means of activation is required and a special audible signal is used to indicate its engagement. Because of the high dose rates to the patient, the high dose rate setting should <u>only</u> be used <u>briefly</u> to perceive detail that cannot be otherwise discern.


Date 01 (Slide Layer)

Dose Rate

For the a high level option (or high-dose rate) which allow dose rates well beyond the standard regulatory levels, a special means of activation is required and a special audible signal is used to indicate its engagement. Because of the high dose rates to the patient, the high dose rate setting **should** <u>only</u> be used <u>briefly</u> to perceive detail that cannot be attenuite discuss.


Date 02 (Slide Layer)


Date 03 (Slide Layer)

Dose Rate

For the a high level option (or high-dose rate) which allow dose rates well beyond the standard regulatory levels, a special means of activation is required and a special audible signal is used to indicate its engagement. Because of the high dose rates to the patient, the high dose rate setting should <u>only</u> be used <u>briefly</u> to perceive detail that cannot be otherwise discern.

Date 04 (Slide Layer)

2.5 Monitoring Staff Radiation Dose: Minimize Risk

Time (Slide Layer)

Distance (Slide Layer)

Shielding (Slide Layer)

